
CAEBAT OAS/VIBE

S. Allu, J.J. Billings, W. Elwasif, S. Kalnaus, A. Kumar, D. Lebrun-Grandie, A.
McCaskey, S. Pannala, S. Simunovic, R.W. Smith, B. Turcksin, J. Turner

12/1/2016
Production Release v1.2

Document detailing the updated release to users of CAEBAT OAS and VIBE.
Contains software description, installation, run instructions, and examples.

Contents

1 New Features 3

2 Introduction 3

3 OAS 5

4 Battery Markup Language (BatML) 6

5 Battery State 9

6 Virtual Integrated Battery Environment (VIBE) 10

7 Integrated Computational Environment (ICE) 11

8 Example Applications 11
8.1 Example 1: Cylindrical Cell (Electrochemical-Electrical-Thermal) . . 11
8.2 Example 2: Pouch cell (Electrochemical-Electrical-Thermal) 13
8.3 Example 3: 4P and 4S battery module 14
8.4 Example 4: 4P module under dynamic discharge 16

9 Getting Started 17
9.1 Running VIBE in a virtual machine 17
9.2 Running VIBE in Docker . 20

10 Appendix A: Command line OAS/VIBE launch instructions 21

11 Appendix B: Launch instructions with ICE 26
11.1 Creating the model . 26
11.2 Generating simulation input key-value pair file 28
11.3 Launching a CAEBAT job . 29
11.4 Visualizing output . 30

11.4.1 Case 2 . 32
11.4.2 Case 3 . 32
11.4.3 Case 6 . 33
11.4.4 Case 7 . 33
11.4.5 Case 10 . 34

12 Appendix C: Instructions for advanced installation 39
12.1 ICE . 40
12.2 OAS/VIBE . 40

13 Appendix D: Implementation of tight coupling 40

1

14 References 42

15 Team 43

16 Acknowledgment 44

2

1 New Features

The new release extends the previous version by implementing:

• Continuous execution mode of OAS which provides savings in computational
time of up to 50%
• Capability to simulate dynamic discharge (variable potentiostatic/galvanostatic

conditions)
• Improved Integrated Computational Environment (ICE)
• Deployment via Docker and addition to Virtual Machine

2 Introduction

As part of the CAEBAT (Computer Aided Engineering for Batteries) activities,
ORNL developed a flexible, robust, and computationally scalable open-architecture
framework that integrates multi-physics and multi- scale battery models. The physics
phenomena of interest include charge and thermal transport, electrochemical reac-
tions, and mechanical stresses. They operate and interact across the porous 3D
structure of the electrodes (cathodes and anodes), the solid or liquid electrolyte sys-
tem and the other battery components. The underlying lower-length processes are
accounted for through closure equations and sub- models that are based on resolved
quantities. The schematic of this framework is given in Fig. 1.

Figure 1: Schematic of the OAS modeling framework and interactions with other
tasks within the CAEBAT program and external activities.

3

This framework enables seamless integration of the following physical phenomena
that are necessary for development of realistic and predictive battery performance
and safety models:

Mass Transport

• Lithium/electron transport through cathode, anode and electrolyte materials
• Spatiotemporal variations in material properties

Thermal Transport

• Thermal transport through various battery materials as a function of space and
time

Electrochemistry

• Primary and secondary reactions
• Interfacial reactions

Mechanical behavior

• Linear and nonlinear mechanics
• Stress/strain relationships
• Fracture at primary and secondary particle levels

The objective of the project is to develop a mathematical and computational infras-
tructure, and modeling framework that will enable seamless multi-scale and multi-
physics simulations of battery performance and safety. The modeling framework will
transfer the information between models in a physically consistent and mathemati-
cally rigorous fashion for both spatial and temporal variations. The end result will
be a verified, computationally scalable, portable, and flexible (extensible and easily-
modified) framework that can integrate models from the other CAEBAT tasks and
industrial partners. The framework will be used to validate models and modeling ap-
proaches against experiments and to support rapid prototyping of advanced battery
concepts. Fig. 2 shows different parts of CAEBAT VIBE simulation environment that
work together to provide user with flexibility in the problem setup, solution formu-
lation and simulation launch. Each of the parts is discussed in subsequent sections
with corresponding examples.

4

Figure 2: Parts of the CAEBAT VIBE environment

3 OAS

The goal is to create a modular and extensible software infrastructure that can sup-
port multiple modeling formulations and computer codes for simulation of battery
performance and safety. The main guiding principles for the design of the framework
are:

Flexibility

• Programing language-agnostic
• Supports multiple modeling approaches and codes
• Combines appropriate component models for problem at hand
• Supports integrated sensitivity analysis and uncertainty quantification

Extensibility

• Ability to add proprietary component models

Computational scalability from desktop to HPC platforms

• Portable and adaptable to various computer hardware architectures

The OAS infrastructure employs a modular design with strict interfaces, object-
oriented data structures, and a lightweight backplane implemented in Python script-
ing language. This design is illustrated in Fig. 3. The framework services control the
various software components through component adapters. The components update

5

the battery state through state adapters. The battery state is the minimal digital
description of the battery in space and time such that each simulation component
can apply their respective physics models and advance in time from each state point
to the next. The OAS framework, along with physics and support components and
the adapters constitute the Virtual Integrated Battery Environment (VIBE).

Figure 3: Schematic of the OAS modeling framework, which connects physics com-
ponents through component adapters, with linkage to the battery state through state
adaptors. A specific collection of components, adaptors, and the OAS framework
defines one realization of VIBE (Virtual Integrated Battery Environment)

4 Battery Markup Language (BatML)

The objective of the BatML specification is to provide standardized format for defi-
nition of all the necessary information for battery performance and safety modeling.
The overall design for the BatML is given in Fig. 4 below. The BatML Schema es-
tablishes the main structure for the BatML data files and enables data validation and
consistency checking. BatML files can contain databases and models with default
values or with company proprietary information. For e.g., Dow-Kokam or Johnson
Controls can provide a database of their cell- sandwich properties that an OEM can
directly use in their models. Several examples based on open literature for standard
battery materials and components have been developed and made available to the
project partners. The graphic workflow environment described later in this docu-
mentation (ICE) uses these Schemas and Databases along with any additional user
input to create a BatML input file. This XML file can either be used directly by sim-
ulation packages or through translators that transform this input into native formats
read by the different software components.

6

Figure 4: Overall structure of the battery markup language.

The top-level structure of the Battery ML Schema (available at the CAEBAT project
website http://batterysim.org) is shown in Fig. 5. Here we define a battery com-
ponent type that contains the base components such as anode, cathode, electrolyte,
separator, current collectors. These base components are used to build higher-level
components such as cell-sandwich, cell, module, pack, parts (e.g., busbar, cooling
fins). Each of these components can contain additional sub-components, as their def-
inition is dependent on the form of model used. For e.g., the cell-sandwich definition
will depend on the model for electrochemical component. The Cell can be further
specified as Cylindrical cell, Prismatic cell, etc. To enable this flexibility, we picked
the relational data model (hierarchical data model will also be implemented in the
language). The main considerations for selecting the relational versus hierarchical
data model were:

• Batteries have very deep hierarchy and the hierarchical data model will lead to
considerable duplication of the data
• Relational data model provides the flexibility to quickly modify the hierarchies

of the models and add new components
• Relational approach requires that all the references to the data exist and that

the model is self- contained. This does not impose a strong limitation because
the input files will be primarily manipulated using GUI and not by user editing
of the XML files.
• Cross referencing in relational data model drastically reduce data duplication

and the corresponding risk for errors

7

Figure 5: Battery markup language schema.

Once the DualFoil model has been selected, it can be further subdivided into different
components of the cell sandwich. The Battery ML schema imports the cell-sandwich
schema (whose structure is shown in Fig. 6 and can be downloaded from the project’s
web site) that further specifies the details of its components. Similar hierarchical
expansion can be used to define cell, module, pack, etc. Current implementation
contains the above battery hierarchy. Translators between BatML and other input
formats of CAEBAT partners have been developed with the final goal of BatML
becoming a standard. Fig. 7 compares the EC Power input and conversion to BatML.
Similar translators have been developed for Text Battery Model (.tbm) files (BDS/CD
Adapco), .svm files (NREL MatLab model), as well as ANSYS input. We keep the
project’s website up to date with the latest version of the schema, corresponding
documentation and examples, schema validation tools, etc.

8

Figure 6: Cell sandwich and component markup language schema types.

Figure 7: Translation between BatML and EC power input.

5 Battery State

The OAS framework integrates battery models using component and state adapters.
The component adapters interact with the components by preparing the necessary
inputs to run the components and by scheduling the component runs. The state
adapters interact with the battery state file(s) by updating all the necessary informa-
tion about the battery state and the methods for coupling the components. Fig. 8
shows a battery state file that transfers the information between the electrochem-
istry, thermal and electrical physics components. The device hierarchy is modeled
by coarse-graining of the underlying sub-components. The top hierarchical level of
the model is divided into zones. These zones then transfer information between the

9

components in case of loosely coupled multi-physics simulations. Further description
and examples of the battery state are given in the sections that follow.

Figure 8: The battery state file is the core device for passing data between compo-
nents.

6 Virtual Integrated Battery Environment (VIBE)

We have added several components for modeling electrochemistry and mass, electron,
and heat transport in order to VIBE. The components that have been integrated so
far are:

Electrochemistry

• Pseudo 2D Dual-Foil (Doyle, Fuller et al. 1993; Fuller, Doyle et al. 1994; Fuller,
Doyle et al. 1994)
• 3D electrochemistry model known as AMPERES
• NTG (Seong Kim, Yi et al. 2011)
• NREL MSMD (Kim, Smith et al. 2011)
• AMPERES Single Particle
• AMPERES Pseudo-2D

Thermal and Electrical

• AMPERES

Cost Model

10

• ANL cost model

Mechanics

• EPIC, LS-Dyna, LIGGGHTS/LAMMPS

7 Integrated Computational Environment (ICE)

ICE is a graphical workflow editor for input, simulation setup, job launch and anal-
ysis. The driving force behind ICE is the development of software that provides an
integrated set of capabilities for working with physics simulators for creating input
files, managing and analyzing data, launching jobs and code coupling through data
mapping. The framework was originally developed for the Nuclear Energy Advanced
Modeling and Simulation program (NEAMS), - a DOE NE project. The capabilities
of ICE for CAEBAT were designed specifically to aid in simulation setup and job
launch. Within the graphical interface the selection of components (physics models),
platforms, time-stepping schemes, meshes, etc becomes much easier task. Further
updated information can be found on the ICE project webpage. Visualization of
the simulation results is executed through a connection to the external visualization
software application, VisIt. Detailed description of ICE usage to set up and run a
simulation is provided in Appendix B.

8 Example Applications

The examples provided in the following sections are currently availabe as part of the
VIBE package.

8.1 Example 1: Cylindrical Cell (Electrochemical-Electrical-
Thermal)

This example (located in the VIBE repository at examples/case3/) represents the
geometry of a rolled cylindrical cell. The main model properties are given in the table
below. Fig. 9 shows the geometry and the finite element mesh used to resolve the
geometry of the cylindrical cell and the current collectors. The top hierarchy model
has 168 (56 each for the cell-sandwich and positive and negative current collectors)
zones in 4 quadrants. The zones describe different current collector and cell sandwich
regions. The simulation uses 56 concurrent Dualfoil simulations for different cell-
sandwich zones. Typical results are shown in Fig. 10. The maximum temperature
occurs at the cell core as expected.

11

https://eclipse.org/ice
https://wci.llnl.gov/simulation/computer-codes/visit

* table here *

Figure 9: Geometry and mesh of the simulated cylindrical cell.

Figure 10: Sample results for example 3 (electrical potential on left and temperature
on right).

12

8.2 Example 2: Pouch cell (Electrochemical-Electrical-Thermal)

This example (located in the VIBE repository at examples/case6/) represents the
geometry of a prismatic pouch cell. The electrochemistry is modeled using the NTG
model instead of the DualFoil model. The cell under consideration is a 70mm x
110mm x 10mm 4.3 Ah pouch cell manufactured by Farasis Energy, Inc with the
properties given in the table below. The pouch cell in the current study contained
17 cathode and 17 anode layers and the finite element mesh was divided into 71
corresponding zones for cell sandwich, current collectors, and pouch (Fig. 11).

* table here *

Figure 11: Geometry and mesh of pouch cell.

The example of the simulation results is shown in Fig. 12 and represents a temperature
distribution in a pouch cell following a discharge at 5C rate of applied current. At
such high applied current significant increase in temperature can be observed in the
cell core. The simulation results have been validated with the experiments involving
IR temperature measurement on the surface of the pouch cell (Fig. 12b). Experiments
agree well with the predicted temperature profiles for all C-rates.

13

Figure 12: Simulation results (a) and validation with IR measurements (b). Source:
S. Allu et al, J Power Sources 246, 2014, pp. 876-886.

8.3 Example 3: 4P and 4S battery module

In this example, the single pouch cell described in the previous section is used as a
building block for a module, containing 4 cells in parallel or in series. The example
is in the repository in examples/case7/. Meshes representing parallel (4P) and series
(4S) module configurations are shown in Fig. 13. No cooling fins were placed between
the cells in this model. The mesh consists of approximately 150,000 FE nodes and
308 zones in the whole module thus resolving each current collector. Concurrent
electrochemical model runs (DualFoil was chosen in this case) were performed in 136
charge transfer zones within the module. The goal of this study was to estimate
temperature variations across the cells connected in series and in parallel.

14

Figure 13: Module schematics with (a) series (4S) and (b) parallel (4P) cell arrange-
ments.

The results of the simulations when symmetric cooling to the module surfaces is
applied with a convective heat transfer coefficient of 35 W m-2 K-1 are shown in
Fig. 14. As can be seen both parallel and series cases result in very similar distribution
of temperature across the module. In both cases, a 5C discharge rate was applied.

15

Figure 14: End of discharge temperature profiles in (a) 4P and (b) 4S modules.

8.4 Example 4: 4P module under dynamic discharge

In this example, the mesh corresponding to the 4P module is used to simulate the
dynamic discharge under the user supplied variable potentiostatic/galvanostatic con-
ditions. The example can be found in examples/case10/. The model uses DualFoil
and AMPERES Thermal components. An option of driving simulation under varying
current (dynamic discharge) has been added in the current release. The key-value
pair file (for detailed description of sections of the input and configuration files please
see Appendix A) contains several lines dedicated specifically for this new option. The
following keywords are used to describe the cycling profile:

NUMSEG - Number of segments in the cycling profile.

CURRDEN - List of current density values corresponding to each segment.

MODESEG - List of segment modes. Most commonly used are 0 for potentiostatic
and 1 for galvanostatic.

CUTOFFL - Lower cut-off potential.

CUTOFFH - Upper cut-off potential.

NOTE: If the NUMSEG keyword is missing in the key-value pair input file, the
simulation will assume a default constant current discharge.

To utilize the dynamic discharge capability, the time stepping must be specified using
the EXPLICIT option in the simulation config file with explicitly specified values of

16

time corresponding to the segments of the cycling profile. Please see Appendix A for
detailed description of input and config files required to launch a simulation.

If zero current density is specified in CURRDEN, the simulation will be performed
under potentiostatic condition using the OCP corresponding to the end of previous
cycling segment.

9 Getting Started

The following sections provide instructions on running VIBE in a virtual machine or
as a Docker container.

9.1 Running VIBE in a virtual machine

In order to enable a user to take VIBE for a ‘test drive’ we have the software pack-
aged within a Virtual Machine (VM) which can be installed on user’s machine of
choice. This section describes the instructions on how to run the simulation in
VM. The virtual machine is packaged into the open virtualization format archive
BatterySim-release<Version>.ova which can be downloaded from the project
website. Before using the VM the Virtual Box software needs to be installed on the
user machine. The software can be downloaded from virtualbox.org together with
the installation instructions and user manual. Once installed, start the Virtual Box
and click on File > Import Appliance. This will open the dialogue box where you
can select the BatterySim-release.ova as your virtual machine. After such selection,
BatterySim will appear in the list of the virtual machines within the left panel of
Virtual Box (Fig. 15).

17

https://www.virtualbox.org/

Figure 15: Virtual box with VM imported.

If you have several virtual machines select the BatterySim and start the VM. There
is no password for the BatterySim, so simply press Return key. This will open the
Fedora Linux environment as shown in Fig. 16.

Figure 16: BatterySim virtual machine.

From here the user can navigate to the examples directory and run the simulations
in command line as described in APPENDIX A. In Fig. 17a the terminal window
navigating to case 2 is shown with corresponding simulation configuration file (ther-
mal .conf) and the input directory which stores input files as well as mesh (exodus .e

18

file). After the simulation is complete, the case directory will be populated with log
files containing information on simulation run and possible errors as well as a new
work directory which contains the results of simulation and the battery state CGNS
file. More on the directory structure and command line launch instructions is given
in Appendix A. Alternatively user may launch ICE by double-clicking on the ICE
desktop icon (Fig. 17b). Instructions on running simulations with ICE can be found
in Appendix B.

Figure 17: Using command line (a) or ICE (b) to setup and run a simulation in VIBE.

The home directory of the battery simulator is /home/batsim/ and it contains instal-
lation of OAS (/home/batsim/oas/) and VIBE with the simulation cases (/home/batsim/vibe/).
Paths for components’ drivers and executables are included in configuration file bat-
sim.conf which is placed in a separate directory /PathTo/examples/config/ and is
used by each simulation case. Simulation can thus be launched from the case direc-
tory by specifying the OAS directory and simulation configuration and pressing the
Return key:

$ /home/batsim/caebat/oas/install/bin/ips.py \
--simulation=thermal_electrical_chartran_cell_twoway.conf \
--log=temp.log --platform=../config/batsim.conf -a

The BatSim virtual machine comes with four simulation cases packaged in examples
directory. These involve different battery and module geometries and physical mod-
els as discussed in APPLICATION EXAMPLES section. For instance running the
simulation of case2 as described above will provide a loosely coupled electrochemical-
thermal-electrical solution for unrolled cell with DUALFOIL as electrochemical com-
ponent. Details of the simulation cases are given in Appendix A and Appendix B.

19

9.2 Running VIBE in Docker

Using Docker container to run the software is an alternative way to using the virtual
machine. The details and installation instructions depending on the OS can be found
at docker.com. The following instructions explain how to:

• launch the VIBE container
• connect to the container from ICE
• stop and remove the container

Launch the VIBE container

Pull the latest version of the VIBE container:

$ docker pull rombur/vibe-ssh

Download the private key id rsa vibe:

$ wget https://raw.githubusercontent.com/Rombur/VIBE/master/remote/id_rsa_vibe

Run the container:

$ docker run -d -p 2222:22 --name vibe_ssh rombur/vibe-ssh

This will run in detached mode a container named vibe ssh using the image rombur/vibe-
ssh. It will also map the port 2222 of your machine to the port 22 of the container.
This port has been exposed in the container.

Connect to the container from ICE

Use ICE like you would do in the VM with two differences.

Because the examples are in the container not in your local machine, you cannot
browse them. If you want to use the input files from the examples, you will need to
copy them from the container. You can connect to the container using the following
command:

$ ssh -i id_rsa_vibe -p 2222 root@localhost

With this command, ssh will use the port 2222 of your machine and the private key
id rsa vibe to connect to the container. The examples can be found in /opt/vibe/examples.
If you want to copy case1 from the VIBE container into you working directory, you
can do:

$ docker cp vibe_ssh:/opt/vibe/examples/case1 .

Inside the VibeLauncher window, in the Hosts pane, you need to change the hostname
from localhost to docker and the Execution Path from /home/batsim/caebat to /opt.
To do so, simply click on localhost and /home/batsim/caebat. Once you launch
the job, a window should pop up to specify the properties of the new connection.

20

https://www.docker.com/

In the Host field, write localhost. In the User field, write root. Click on Network
Connections, SSH2, then click on Add Private Key. . . and add the id rsa vibe file.
Back on the New Connection window, under Advanced type 2222 in the Port field.

The container will still run even after you exit ICE. You will need to stop and remove
it yourself using:

$ docker stop vibe_ssh

$ docker rm vibe_ssh

To check that the container has been stopped, type:

$ docker ps

There should not be any container named vibe ssh. To check that the container has
been removed, type:

$ docker ps -a

There should not be any container named vibe ssh.

10 Appendix A: Command line OAS/VIBE launch

instructions

This section describes the simulation launch procedure using command line as op-
posed to using integrated computation environment (ICE) which is detailed in the
next section. All simulation scenarios (cases) are a part of VIBE and correspondingly
are placed in PathTo/vibe/examples/ directory. When running in BatterySim virtual
machine this directory will be located in /home/batsim/caebat/vibe/examples/. As
an example the coupled electrochemical-electrical-thermal modeling of a prismatic
cell (case 6) is considered here. The structure of the directory case6 is shown below.

Figure 18: Structure of directory for Case 6.

The input directory contains mesh file (Exodus file) of the geometry as well as key-
value pair input file to set up material constants in simulation models. This file needs

21

to be edited if different boundary conditions and/or model parameters are desired.
In the present configuration of VIBE the input keyvalue file has the following fields:

Figure 19: Example of input key-value file.

The names of the keys in the input file are to a great extent self-explanatory. IC-
SHORT parameter determines whether internal short circuit is modeled in either ther-
mal or electrical components. NUMBCS sets up the number of boundary conditions
with BCIDS representing IDs of the side sets in the corresponding mesh file where
the boundary conditions are to be applied. Two types of boundary conditions can
be set with BCTYPE=1 representing Robin boundary conditions and BCTYPE=2
representing the Dirichlet type of BC. In the above example, the block of electro-
chemical model parameters represents the NTG model setup. A slightly different
setup is required when the Pseudo 2D model represented by DualFoil subroutine is
used. Parameter CUTOFF sets the voltage at which discharge of the cell terminates.
CURRDEN is the applied current density in A/m2 in the cell (current normalized by
the total area of the cell). THICKNESS determines the thickness of the cell sandwich
(in meters). The YPolyDegrees and UPolyDegrees vectors set the dimensions of the
polynomial fits for Y and U functions in NTG model (please see formulation of models
in the Battery State section of this release document). The first element of the vector
represents the order of the polynomial that describes impedance (Y) or OCP (U) as
a function of depth of discharge. If the discharge curves at of the cell different tem-
peratures are available, the corresponding fits can be made bi-polynomial in which
case the degree of polynomial in temperature is described by the second element of
the vector. In case when the thermal behavior data are not available, this member
is simply set to zero, as in the above example. YPolyCoefficients and YPolyCoef-
ficients are the vectors containing the coefficients of the corresponding polynomial
fits. Once the input file has been modified accordingly and saved the simulation
parameters can be configured. This is done within the simulation configuration file
SimulationName.conf. The simulation config file captures the components used in the
simulation, total number of variables passed through the Battery State, input/output
from the components and corresponding component drivers. If a different model is

22

desired this can be changed here. While the example case6 uses NTG model to de-
scribe electrochemistry, this can be changed to Pseudo 2D component (DualFoil) if
needed and if all material constants required for DualFoil code to run are available.
Within the configuration file [PORTS] change the [[CHARTRAN]] implementation
to IMPLEMENTATION = DUALFOIL. The corresponding component specification
can be added to the configuration file, for instance:

[DUALFOIL]

CLASS = CHARTRAN

SUB_CLASS =

NAME = DualFoil

NPROC = 1

BIN_PATH = $CAEBAT_ROOT/bin

INPUT_DIR = $SIM_ROOT/input

INPUT_FILES = ’dualfoil5.in’ , ’li-ion-ebar.in’

OUTPUT_FILES = ’df_caebat.out’

INPUT_VAR = ’lumped_temperature’

OUTPUT_VAR = ’lumped_source’ , ’lumped_resistance’

SCRIPT = $BIN_PATH/dualfoil_chartran.py

In this case, the DualFoil Fortran code requires two input files that need to be placed
in the input directory of the simulation case. More on the DualFoil code description
and requirements can be found at cchem.berkeley.edu. The last set of parameters in
the simulation config file defines the time marching.

[TIME_LOOP]

MODE = REGULAR

START = 0.0

FINISH = 30.

NSTEP = 2

VALUES = 3.4 3.5 3.6 3.7

Two ways of setting up the time step can be implemented. REGULAR mode defines
beginning, end and number of time steps to take during the simulation. EXPLICIT
mode allows specification of a vector containing specific values of time at which sim-
ulation should be performed. In the latter case the software uses the variable named
VALUES. Time is specified in minutes. EXPLICIT method allows using non-uniform
size of time steps and is useful where cell potential changes abruptly compared to oth-
erwise smooth profiles where a large time step is sufficient to progress the simulation.
This mode must be used with dynamic discharge option.

Once the input files have been edited and simulation configuration has been set, the
simulation (case6 in virtual machine BatterySim in this example) can be launched
from the command line by running the following line from the simulation case direc-
tory:

23

http://www.cchem.berkeley.edu/jsngrp/fortran.html

$ /home/batsim/caebat/oas/install/bin/ips.py --simulation=thermal_electrical_chartran_farasis.conf \
--log=temp.log --platform=../config/batsim.conf -a

When simulation completes the results can be found in work directory where they
are arranged by the simulation component.

Figure 20: Example of a working directory.

The CFD General Notation System (CGNS) is used to store the variables in zones.
The corresponding state file named cphit.cgns is stored in battery state directory. The
results of the simulation can be retrieved from THERMAL Amperes 5 and ELEC-
TRICAL Amperes 4 directories with the integer in the directory name showing the
number of the component in sequence. These directories contain the *.silo files that
can be viewed and processed further with VisIt. Since the Virtual Machine comes
with VisIt installed, the user can launch it from any directory by simply typing ‘visit’
in the command line and pressing Return key. This starts the visualization software
where the simulation results can be loaded as a silo database (Fig. 21) or a single file.

Figure 21: Selecting output files to visualize using VisIt in VM.

To view the temperature distribution in VisIt, add a Pseudocolor plot and select

24

Battery Temperature from the list of variables (Fig. 22a). Clicking on the Draw
button will create a plot in the output window (Fig. 22b).

Figure 22:

Rotation, zoom, slicing, transforms, lighting, etc. can be performed in VisIt. More
on this software can be found at wci.llnl.gov.

The plot in Fig. 22 shows the distribution of temperature in unrolled strip (once cell
sandwich) when 2C discharge current is applied and one end of the cell is held at room

25

https://wci.llnl.gov/simulation/computer-codes/visit/

temperature. The solution is obtained with Pseudo2D model (DUALFOIL) used as
an electrochemical component. As already mentioned, the model can be changed to
NTG by replacing DUALFOIL with NTG in the PORTS section of the configuration
tile. The BatterySim Virtual Machine comes with five different cell and module
simulation setups, contained in /home/batsim/caebat/vibe/examples directory as:

• Case2: unrolled cell. Useful for testing new cell parameters (for example differ-
ent materials or porosities) to get an idea about modeling on a cell-sandwich
level.
• Case3: cylindrical Li-ion cell.
• Case6: pouch cell.
• Case7: 4P and 4S modules of four pouch cells from case 6 connected in series

(4S) or in parallel (4P)
• Case10: 4P module of four pouch cells with dynamic discharge

Any of the above simulations can be launched either from command line as described
in this section or using ICE as described in the Appendix B.

11 Appendix B: Launch instructions with ICE

This section provides the tutorial on setting up and running a battery simulation
using ICE. It is encouraged that the user becomes familiar with the VIBE directory
structure by studying Appendix A first and launching a simulation from command
line. Overall the workflow in ICE consists of:

• Creating the model by working with simulation configuration file (Caebat Model)
• Creating the simulation input (Caebat Key-Value Pair Generator)
• Setting up the job launch and running a simulation (Caebat Launcher)
• Viewing the results

We created several predefined simulation cases dealing with different cell geometries:
unrolled cell sandwich, rolled cylindrical cell, pouch cell and module of four pouch
cells. All these cases come with the Virtual Machine VIBE release. The case of 4.3
Ah pouch cell (case6) is a default simulation setup in ICE and the tutorial below
discusses the default case first.

11.1 Creating the model

To begin, launch ICE (if it isn’t already running), and you should be presented
with an empty workbench. Navigate to the ICE Perspective by choosing Window >
Perspective > Other and scrolling to ICE in the pop-up view. In this Perspective,
ICE provides three options for creating new items. The user may click on the green

26

plus icon (+) located near the top-right corner of the Item Viewer, click on the New
Item button in the main ICE toolbar, or choose File > Create an Item. This will
launch a dialog prompting you to select a task (or Item) to create (see Fig. 23). Find
Caebat Model Builder in the Item Selector list and click Finish.

Figure 23: CAEBAT item selector in ICE.

A CAEBAT Model Builder will appear in the main workspace with the default values
corresponding to the pouch cell model. You can now edit the parameters if for instance
a different number of time steps or different total time is desired. The CAEBAT Model
window has two tabs (Fig. 21):

• Time Loop Data, Global Configuration, etc
• Ports Master

Time Loop Data window (Fig 21a, b) allows you to select the battery geometry, time
stepping scheme, components taking part in the simulation and global configuration.
The Ports Master window (Fig. 21c) shows the corresponding input directories, in-
put/output variables that are passed through the battery state, and path to each
component involved in the simulation. Input directories containing meshes are also
specified here. For now leave all the parameters with their default values and click
Go!.

27

Figure 24: Battery model setup in ICE.

11.2 Generating simulation input key-value pair file

The key-value pair input file contains numerical parameters necessary for simulation,
such as material constants, boundary conditions and coefficients of polynomials when
NTG model is used to represent electrochemical component. To pull up a default
Key-Value file for edit, in Item Viewer click on the green plus icon again and select
Caebat Key-Value Pair from the drop down menu (Fig. 23). The file with default
values corresponding to the pouch cell simulation is displayed for edit (Fig. 25). The
keys are explained in Appendix A. The default simulation represents a discharge of
4.3 Ah cell with gradient of temperature applied as boundary conditions (BCs) to the

28

cell surfaces. These settings can be edited here if different BC or different polynomials
for NTG model are desired. For now accept the default values (case6) by clicking Go!.

Figure 25: Key-value pair generator in ICE.

This completes the CAEBAT input generation task. The file generated will be used
in the next step by the CAEBAT Launcher to run the CAEBAT problem. However,
if you’d like to review your input file before launching, you can do so by opening the
File > Open File. . . menu in ICE, and navigating to the file. Once opened, you will
be able to review the input file generated.

11.3 Launching a CAEBAT job

Once the appropriate input files have been generated, launching a simulation is a
relatively simple task. To get started, click the green “+” button once more to create
a new ICE Item. Select Caebat Launcher (Fig. 23) from the menu and click OK.
A form will appear in the main ICE workbench area (Fig. 26). This form contains
the information necessary for launching a CAEBAT problem. The first piece of
necessary information is to specify an input file. From the drop down menu choose the
configuration file generated for the Caebat Model (in our case Caebat Model 1.conf).
If you created your own input file in the previous step using the CAEBAT Model
Builder, this file should appear in the list of available files.

The next step is to specify on which machine CAEBAT will be run, either locally or
remotely. A default is localhost, however, additional hosts can be added by clicking
the “+” button to the right of the Hosts table. When adding hosts, set the Execution
Path to the directory of the machine’s CAEBAT installation. If you are launching on
a remote machine, also be sure that you have appropriate privileges for the CAEBAT
install directory.

Lastly, use the Process menu in the upper right-hand corner; select the Launch the
Job task from the drop- down menu and click the Go! button. Depending on your
host machine’s configuration, you may be prompted for login credentials.

29

Figure 26: Battery simulation launcher in ICE.

As the simulation progresses the console window will display different information
related to each component being executed in sequence. The simulation is finished
when the Done! is displayed in Caebat Launcher:

Figure 27: CAEBAT launcher in ICE.

11.4 Visualizing output

The output produced by a CAEBAT job can be visually analyzed in ICE by utilizing
the VisIt plug-in. Click on Launch Visit and select the location for VisIt installation.
If the simulation was run in Virtual Machine, select Launch Visit Locally and then
click browse and select the path to VisIt binary (Fig. 28). Scroll down and give this
connection a name (any characters) and then click Finish.

Figure 28: Launching VisIt within ICE.

Click on Open Perspective and select Visualization from the list (Fig. 29a). Switch
from ICE to Visualization mode. In Visualization File Viewer selection can be made

30

for the files to view. Select the desired silo file(s) from the /home/batsim/ICEFiles/default/jobs/iceLaunch Date Time/work
directory. The work directory of the simulation contains the results as described in
APPENDIX A. Select the silo file(s) corresponding to the thermal solution from the
THERMAL Amperes directory.

Figure 29: Switching to visualization mode and selecting files in ICE.

In the Visit Plot Viewer add a new plot by clicking the green “+” and selecting Scalars
> Battery/Temperature to view the temperature distribution in the cell. Double click
on the file name in the Visit Plot Viewer. Select pseudocolor from the drop down
menu of plot options. The result shows a temperature distribution in the pouch cell
under non-uniform cooling of the edges (Fig. 30). The visualization capabilities in
ICE allow object rotation, translation, and zoom in/out. If several silo files were
loaded with each file representing a time step, a play feature can be used to step
through the solutions and see the progression in time. These capabilities provide a
good tool to judge the goodness of solution. For extended visualization tools the user
is advised to launch VisIt which comes as a part of VM (simply type visit in the
command line and hit Return).

Figure 30: Temperature distribution in pouch cell visualized in ICE.

Simulation involving each of the cases located in examples directory can be performed

31

either using command line (Appendix A) or by using ICE. The BatterySim Virtual
Machine comes with five different cell and module simulation setups, contained in
/home/batsim/caebat/vibe/examples directory as shown in the table below. Each
geometry, except unrolled cell, is discussed in details in APPLICATION EXAMPLES
section. Any other meshes can be created by user to set up new simulation cases.

11.4.1 Case 2

Unrolled cell. Useful for testing new cell parameters (for example different materials
or porosities) or testing new models on simple cell sandwich geometry.

Figure 31: Case 2 geometry.

11.4.2 Case 3

Cylindrical Li-ion cell.

Figure 32: Case 3 geometry and mesh.

32

11.4.3 Case 6

Pouch cell. Default case in ICE with the NTG model coefficients based on NMC-
Graphite cell discharge profiles.

Figure 33: Case 6 geometry and mesh.

11.4.4 Case 7

4P and 4S modules of four pouch cells from case 6 connected in series (4S) or in
parallel (4P).

33

Figure 34: Case 7 geometry and mesh.

11.4.5 Case 10

4P module with demonstration of dynamic discharge.

Figure 35: Case 10 geometry and mesh.

34

Simulation involving any of the above meshes can be prepared and launched using
ICE. In the following example we will run the module simulation by importing the
configuration files in ICE. The examples are based on Virtual Machine release of
VIBE; with any other installation of VIBE and ICE the pathnames would be different.

Start with launching ICE by double clicking the Eclipse icon in VM. In order to
import items (configuration files and key-value pair input files) in ICE click on the
yellow arrow located in the top toolbar of the ICE window (Fig. 36).

Figure 36: Importing files in ICE.

This will create a dialog box where the user can browse to navigate to the files
that should be imported. Let’s start with the 4P module and first import the sim-
ulation configuration file into ICE. By clicking the Browse button navigate to the
/home/batsim/caebat/vibe/examples/case7 directory and select the 4P.conf file. Se-
lect Caebat Model from the list and click Finish (Fig. 37a). This will create the Caebat
Model form in ICE where the configuration parameters, components and time step-
ping are specified. Click Go! to create the corresponding ICE item. Similarly, import
the key-value pair file from the case7/input directory (Fig. 30b) and click Go! to
create the input file used within ICE. What is left is to create the job launcher by
adding an item to the item viewer (click on the green “+” in the Item Viewer and
select Caebat Launcher). Select the corresponding CaebatModel.conf file, check ‘Use
custom key-value pair file?’ and select the corresponding CaebatKeyValuePair.dat
file from the drop down list.

NOTE: Import of the key-value pair file into ICE is necessary only when this file will
be modified by user. If no modifications are intended, ICE will use the file associated
with the selected simulation case and the user can leave ‘Use custom key-value pair
file?’ field unchecked.

35

Figure 37: Importing items into ICE.

Launch the simulation by clicking Go!. When finished, display the result of the
thermal solution as described in Visualizing Output section above (be sure to select
the latest iceLaunch directory containing the results of the most recent simulation).
The resulting window with the thermal solution is displayed in Fig. 38.

Figure 38: Temperature distribution in 4P Li-ion module.

Similarly, the simulation involving module with cells in series can be performed.
Close the Visit Editor window, delete the files in Visualization Viewer and switch
from Visualization to ICE mode which will open the Item Viewer. Close the current
Caebat Model, Key-Value Pair and Launcher windows and delete the corresponding
items from the Item Viewer. Using the procedure described for item import above,
import the new Caebat Model using the configuration file for 4S simulation (4S.conf)
located in PathTo/examples/case7/ directory. Import the key-value pair input file
from PathTo/examples/case7/input/ directory. Since the four cells are now connected
in series, the total current flux should be four times less than the one used in the
previous 4P simulation. Enter the corresponding number in the CurrentFlux field of
the Key- Value Pair form as shown below (Fig. 39) and click Go!.

36

Figure 39: Changing values in the input file.

In the same manner as described for the 4P case, add the Caebat Launcher, select
the appropriate model and key-value files and launch the simulation. When the
simulation is done the solution can be checked by using the visualization viewer in
ICE as previously described. This time let’s check the electrical solution by viewing
the potential distribution in 4S module. Launch Visit and select the silo file located
in the ICE jobs directory where the recent launches are stored:

/home/batsim/ICEFiles/default/jobs/iceLaunch_DateAndTime/work/ELECTRICAL_Amperes/output_Electricity_silo/

Select the file 2.1.silo which corresponds to the final solution. In Visit Plot Viewer
add an item (green “+”) and select Battery/PotentialSolutionP1 in Scalars (Fig. 40).
Click OK.

Figure 40: Selecting the potential as output variable from the solution.

37

After double clicking on the output variable name (Battery/PotentialSolutionP1) in
the Visit Plot Viewer, the plot showing potential distribution in 4S module will appear
(Fig. 41). Holding left mouse button down and moving the mouse will rotate the plot,
holding Shift key down and dragging the mouse with left button pressed will translate
the plot and using mouse scroll will zoom in and out.

Figure 41: Output of electric potential in 4S module in ICE.

At this point user should be able to run any of the cases either from the corresponding
case directory using command line or by using ICE to import the input files from
the corresponding case directory and launching the simulation. Different discharge
currents or time stepping can be applied. Pre-defined boundary conditions for thermal
solution can also be changed. The default for the module case is uneven cooling of
module sides with heat transfer coefficients of 15 W/m2K and 55 W/m2K which
imitates failure of cooling system when air moves fast on one side and slow convective
cooling is applied to the other side. These boundary conditions can be changed to
investigate other cooling scenarios. Next the user can utilize the provided geometries
and meshes to test other materials or models. If the discharge curves for other
materials are available, the NTG coefficients can be determined and the user can
input them into the key-value pair file as U and Y polynomials. The order of those
polynomials can be changed as well (default is 6). Case2 and case3 are supplied with
DUALFOIL as well as NTG pre-defined. The user can select either of the models
by typing the corresponding name for CHARTRAN component in the Cebat Model
form in ICE (as shown below). DUALFOIL model is based on porous electrode theory
and requires significant amount of material parameters to be determined; if these are
known for particular cell chemistry, user can set up DUALFOIL as an electrochemical
component instead of NTG for case6 and case7 as well. Finally, the user can of course
supply his mesh to set up a new simulation case in VIBE.

38

Figure 42: Port name and implementation in ICE.

12 Appendix C: Instructions for advanced instal-

lation

The following must be installed prior to installation of OAS and VIBE.

• CMake (version 2.8.6-rc3 recommended), available from cmake.org
• C, C++, and Fortran compilers (gcc4.7 or higher, g++, gfortran 4.3 and higher

recommended)
• MPI available from mpich.org or open-mpi.org (open MPI 1.8.3 or higher)
• HDF5 (version 1.8.7 recommended), available from hdfgroup.org
• SILO (version 4.7.2 recommended), available from wci.llnl.gov
• CGNS is available at cgns.sourceforge.net When building cgns use ccmake to

edit the flags before generating the Makefile. The flags can be edited to match
the following:

BUILD_CGNSTOOLS ON

CGNS_BUILD_SHARED ON

CGNS_USE_SHARED ON

CMAKE_BUILD_TYPE Release

CMAKE_INSTALL_PREFIX /PATH/TO/cgnsinstall_dir ENABLE_64BIT OFF

ENABLE_FORTRAN ON

ENABLE_HDF5 ON

ENABLE_LEGACY OFF

ENABLE_SCOPING OFF

ENABLE_TESTS OFF

FORTRAN_NAMING LOWERCASE_

HDF5_INCLUDE_PATH /PATH/TO/hdf5-1.8.9/include

HDF5_LIBRARY /PATH/TO/hdf5-1.8.9/lib64/libhdf5.so

HDF5_NEED_MPI OFF

HDF5_NEED_SZIP OFF

HDF5_NEED_ZLIB OFF

Type ‘c’ to configure and ‘g’ to generate the Makefile.

39

http://www.cmake.org
http://www.mpich.org
http://www.open-mpi.org
http://www.hdfgroup.org/HDF5/
https://wci.llnl.gov/codes/silo/
http://cgns.sourceforge.net/

NOTE. Make sure the bashrc file contains the corresponding paths to hdf5 and cgns
libraries:

Export LD_LIBRARY_PATH=$CGNS_ROOT/lib:$HDF5_ROOT/lib:$MPI_ROOT/lib:$LD_LIBRARY_PATH

12.1 ICE

ICE is a free and open source project available for download from the Eclipse download
servers. To download, navigate to eclipse.org/ice and click the ‘Downloads’ button
found in the site’s top toolbar. ICE can be downloaded as a binary for Linux, Windows
or Mac or as source code from the ICE GitHub repository github.com/eclipse/ice. ICE
also provides a wiki and other applications that document the current capabilities of
ICE as well as the bug tracker for the project. Detailed instructions on using CAEBAT
with ICE can be found at wiki.eclipse.org and in an instruction video at youtube.com.
ICE is released under the Eclipse Public License (EPL).

12.2 OAS/VIBE

Please contact the team to obtain access to repository.

13 Appendix D: Implementation of tight coupling

One of the major advantages of CAEBAT project is that the final product is an open
source software. In other words the user can become a developer and implement his
own simulation scenarios as well as integrate components into VIBE. In this example
we discuss implementation of tight coupling (Picard iteration) between electrochem-
ical (DualFoil) and Thermal components in VIBE.

In general, Picard iteration to a specified convergence criteria provides tight coupling
of two physics components f0 and f1 exchanging variables via functions g. At each
time step, a fixed-point iteration can be schematically represented as follows.

Figure 43: Example of convergence.

40

https://eclipse.org/ice
https://github.com/eclipse/ice
http://wiki.eclipse.org/Using_VIBE_with_ICE
https://www.youtube.com/watch?v=ieMlDUZZfpg

In terms of implementation in VIBE, such task is relatively simple and requires cre-
ating the new simulation driver which would call the corresponding components in
the right sequence until the desired convergence is reached. Drivers can be found in
VIBE/trunk/components (see figure below).

Figure 44: Components directory for VIBE.

Simulation drivers follow Python logic with the Driver class where the actual call of
components is performed. The sequence and number of components are characteristic
of the simulation setup. For instance the unit iteration sequence in this example can
be represented as

class Driver(Component):

def __init__(self, services, config):

"code here"

def step(self, timestamp=0):

"code here"

Iterate throught the timeloop

for t in tlist[1:len(timeloop)]:

"code here"

while abs(T_new_sum - T_old_sum) > tol :

services.call(chartran_comp, ’init’, t)

services.call(chartran_comp, ’step’, t)

services.call(chartran_comp, ’finalize’, t)

services.call(electrical_comp, ’init’, t)

services.call(electrical_comp, ’step’, t)

services.call(electrical_comp, ’finalize’, t)

services.call(thermal_comp, ’init’, t)

services.call(thermal_comp, ’step’, t)

services.call(thermal_comp, ’finalize’, t)

41

Where the Electrochemical (‘chartran’), Electrical and thermal components are called
in the above sequence at each time step. In this particular case the convergence is
checked in terms of temperatures from the current and previous Picard iteration. The
thermal component is coupled to DualFoil via temperature-dependent diffusivities
and Buttler-Volmer kinetics in DualFoil component. To check the influence of tight
coupling, simulations were run on an unrolled cell with properties of the polymer cell
described in Doyle, Fuller 1993. The results are shown in Fig. 45. Weak dependence of
sources on temperature results in very fast convergence of Picard iterations (typically
within 4 iterations).

Figure 45: Influence of the coupling scheme on the heat source in Li-polymer cell.

14 References

Doyle, M., T. F. Fuller, et al. (1993). “Modeling of Galvanostatic Charge and
Discharge of the Lithium/Polymer/Insertion Cell.” Journal of the Electrochemical
Society 140(6): 1526-1533.

Eldred, M. S. DAKOTA, a multilevel parallel object-oriented framework for design
optimization, parameter estimation, uncertainty quantification, and sensitivity anal-
ysis: Version 4.1 reference manual.

42

Elwasif, W. R., D. E. Bernholdt, et al. (2012). Parameter Sweep and Optimization of
Loosely Coupled Simulations Using the DAKOTA Toolkit. International Conferences
on Computational Science and Engineering, Paphos, Cyprus, IEEE.

Fuller, T. F., M. Doyle, et al. (1994). “Relaxation Phenomena in Lithium-Ion-
Insertion Cells.” Journal of the Electrochemical Society 141(4): 982-990.

Fuller, T. F., M. Doyle, et al. (1994). “Simulation and Optimization of the Dual
Lithium Ion Insertion Cell.” Journal of the Electrochemical Society 141(1): 1-10.

Kim, G.-H., K. Smith, et al. (2011). “Multi-Domain Modeling of Lithium-Ion Bat-
teries Encompassing Multi-Physics in Varied Length Scales.” Journal of the Electro-
chemical Society 158(8): A955-A969.

Seong Kim, U., J. Yi, et al. (2011). “Modeling the Dependence of the Discharge
Behavior of a Lithium-Ion Battery on the Environmental Temperature.” Journal of
the Electrochemical Society 158(5): A611-A618.

Srinivasan, V. and C. Y. Wang (2003). “Analysis of Electrochemical and Thermal
Behavior of Li-Ion Cells.” Journal of the Electrochemical Society 150(1): A98-A106.

Website, B. “BatPac.” from cse.anl.gov/batpac.

Allu, S., Kalnaus, S., Elwasif, W., Simunovic, S., Turner, J.A., Pannala, S., A new
open computational framework for highly resolved coupled three-dimensional multi-
physics simulations of Li-ion cells, J Power Sources 246 (2014), 876-886.

15 Team

The CAEBAT ORNL team consists of multidisciplinary researchers working on vari-
ous aspects of computational science related to batteries and we are working closely
with the experimental groups at ORNL for validation. The team structure is given
below. More information can be found at the project website batterysim.org.

43

http://www.cse.anl.gov/batpac/index.html
http://batterysim.org

Figure 46: CAEBAT team members at ORNL.

16 Acknowledgment

Research was sponsored by the U.S. Department of Energy, Assistant Secretary for
Energy Efficiency and Renewable Energy, Vehicle Technologies Program, Hybrid Elec-
tric Systems activity, under contract DE-AC05- 00OR22725 with UT-Battelle, LLC.
The support of the CAEBAT (Computer Aided Engineering for Batteries) program
with Brian Cunningham and David Howell as the managers is acknowledged. The
support of the ORNL Sustainable Transportation program office (Ron Graves and
Claus Daniels) is also acknowledged along with contributions from Damien Lebrun-
Grandie, Abhishek Kumar, Jagjit Nanda, Hsin Wang, and Nancy Dudney.

44

	New Features
	Introduction
	OAS
	Battery Markup Language (BatML)
	Battery State
	Virtual Integrated Battery Environment (VIBE)
	Integrated Computational Environment (ICE)
	Example Applications
	Example 1: Cylindrical Cell (Electrochemical-Electrical-Thermal)
	Example 2: Pouch cell (Electrochemical-Electrical-Thermal)
	Example 3: 4P and 4S battery module
	Example 4: 4P module under dynamic discharge

	Getting Started
	Running VIBE in a virtual machine
	Running VIBE in Docker

	Appendix A: Command line OAS/VIBE launch instructions
	Appendix B: Launch instructions with ICE
	Creating the model
	Generating simulation input key-value pair file
	Launching a CAEBAT job
	Visualizing output
	Case 2
	Case 3
	Case 6
	Case 7
	Case 10

	Appendix C: Instructions for advanced installation
	ICE
	OAS/VIBE

	Appendix D: Implementation of tight coupling
	References
	Team
	Acknowledgment

